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Animal pollinators have been supporting the lives of human beings on Earth. Bee pollinators
are the biggest contributors to the pollination of crops, providing humans with food. Given such
circumstances, this paper investigates the population of honeybee colonies and the processes of
bee pollination.

We constructed Honeybee Colony Population Model (BCPM) to predict the population of
a honeybee colony over time. We first outlined the life cycle of a honeybee, including eggs,
larval stage, pupal stage, and adult bee stage. Within the adult bee stage, bees transition back
and forth between foragers and hive bees depending on the number of available resources and
the workload of nursing tasks. By listing out factors that affect the population in each stage,
we established equations representing the rate of change in each of the stages of a honeybee’s
life cycle, as well as an equation describing the change in resource storage. We also evaluated
the death rate and the resources in each month of the year and calculated each group’s typical
maximum, minimum, and mean population in a honeybee colony: 3 years after the establishment
of the colony, the total adult population follows a seasonal change with recurring patterns each
year, giving a maximum of 100862 bees and a minimum of 35676 bees. The annual average
population is found to be 64877 bees.

We then conducted a sensitivity analysis on BCPM and found that the initial number of
bee hives and the initial amount of available resources have the most significant impact on the
population of the colony. We also observed an unusual pattern in the cross-analysis of the
two factors and constructed Simplified Colony Collapse Disorder Model (SCCDM) to predict
whether a colony will collapse using only one equation.

In response to question 3, Hive Deployment Model (HDM) is constructed to estimate the
number of hives needed to support the pollination of a specific land area. We first divided
the land into 20 nodes and then found the most appropriate locations to place the hives. After
establishing the equations for movements between nodes per day per forager group, we developed
an iterating algorithm to find the number of hives needed to pollinate crops on 20 acres of land.
We collected data for 9 typical bee-pollinated plants and found the number of hives needed for
each type of plant based on the algorithm, with blueberries being the most demanding, requiring
83 hives, whilst apples and roses only required 2 hives at the other end of the spectrum. Then, we
established a sensitivity analysis to ensure the stability of the model by changing two arbitrary
parameters.

Finally, we discussed the potential advantages and disadvantages of our model. We have
also created a non-technical blog that summarizes our investigation, presenting our results in a
simplified way.

Keywords: Honeybee, Colony Collapse Disorder, Least Squares Fitting, Differential Equations,
Sensitivity Analysis, Undirected Weighted Graphs
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1 Introduction
1.1 Background

Primarily consisting of the queen, drones, and worker bees, one beehive can contain tens
of thousands of bees. Bees demonstrate impressive communicative abilities for a group of this
size, with pheromones acting as an important social glue that binds the colony together. In
particular, the Queen mandibular pheromone (QMP) released by the queen bee regulates the
social behavior of the hive, including swarming and mating, insofar as to facilitate the inhibition
of ovary development in worker bees [1]. Other communication tools, such as bee dances, are
also a testament to bee colonies’ complexity.

These intelligent creatures pollinate one-third of the human diet, feeding billions of people
all over the world [2]. Nowadays, more than 90 crops are dependent on bee pollination, including
apples, squash, broccoli, and many more [3]. In addition to humans, bee pollination also helps
feed 80% of all the birds in the US. Bees’ value also translates into economic profits [4]. In
the US alone, bees contribute $20 billion to the agricultural sector every year, forming an
indispensable component of the global economy [5].

However, The status quo of bees is nothing short of grim—the population of bees peaked
in 1947and has been declining since; nearly one in every ten wild bee species face extinction
[6]. Every year, two out of three beekeepers in the US lose 40% of their bee colonies due to
compounded reasons, including diseases, climate change, and habitat destruction [7]. A study
published in Science found that around 50% of the 109 bee species investigated had been lost,
and the remaining species see a decline in their pollination ability. Therefore, it is vital that we,
the direct beneficiaries of bees, develop a sound understanding of the pollination capabilities
and population trends of bee colonies [8].

1.2 Problem Restatement
• We are asked to construct a mathematical model (Model 1) that estimates the population

over time of one honeybee colony. Because bees go through three developmental stages
— egg, larva, and pupa — we should take into consideration the time each stage takes
to determine the rate at which a bee hive produces new bees. We should also take into
consideration the initial amount of resources that the bees can access so that there is a
starting point for future projections.

• We should conduct sensitivity analysis on our Model 1 and thus determine the change of
which initial variables lead to the most significant change in the average population when
the colony is in a stable stage.

• We should construct another mathematical model (Model 2) which estimates the minimum
number of hives needed to support pollination in a 20-acre parcel of land. Various factors,
such as pollination efficiency and changes in the number of flowers, should be taken into
account, and data from Model 1, such as bee population, can be reused in this model.
Then, we should test our Model 2 on some plant species to yield results.

• Based on the data we acquired in the previous questions, we should put together a
straightforward blog that beekeepers or farmers could use as a potential guide. In the
blog, we should point out the factors that have the most influence over the bee population
and give our estimate of the approximate hive numbers needed to cover the 20-acre land.
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2 Assumptions and Justifications
• Assumption 1: All eggs are hatched after 3 days they are laid. The larval stage lasts for

6 days, and the pupal stage lasts for 10 days.

Justification 1: Typically, an egg laid by the queen will be hatched in 3 days, the
larval stage lasts for approximately 5.5-6.5 days, and the pupal stage lasts for approx-
imately 7.5-14.5 days [9]. For the purpose of constructing a model, we simplify this
premise by taking averages of the duration in the larval and the pupal stage, which will
hardly have an impact on our results since the bee population is large.

• Assumption 2: 50% of foragers die every day if no resource is available.

Justification 2: To simulate the effect of an exponential decrease in foragers, we set
a rate of decline in population each day when the storage of resources falls below 0. We
do not expect an immediate collapse of the colony, nor do we want to trivialize the impact
of this shortage. Therefore, we set the rate of death to 50% to imitate a temperate decline
in the population but preserve the colony’s chances of recovering.

• Assumption 3: The 20-acre farmland has a rectangular shape consisting of 20 smaller
1-acre squares arranged in a 4× 5 pattern.

Justification 3: Since we do not have any information about the shape of the farm-
land, we assume that it is close to a typical rectangular farmland. For the purpose of our
model, we divided the farmland into 20 nodes, each a 1-acre square, so that it is easier to
calculate the distance between farmlands. The model can be altered slightly so that it can
be applied to other shapes of farmlands since the process of HDM is the same.

• Assumption 4: For each forager, 25 visits are made to each acre every time. Besides,
foragers are assigned in groups of 200 and operate together.

Justification 4: The number of visits and foragers is so huge that it will strongly af-
fect our model and undermine the importance of other factors in our model due to time
constraints. Considering the visits and forager behaviors as a group not only helps us
solve the problem of time constraints but also has little impact on the final data we get
from the model because we are simply expecting all the groups to operate at an average
efficiency. The fluctuations of individuals will not influence the bees’ overall behavior.

3 Honeybee Colony Population Model (BCPM)
3.1 Variables

The table of variables used in this model are shown in Table 3.1.

3.2 Typical Honeybee Lifecycle
To establish a model for the population of a honeybee colony, we first draw an outline of

the life cycle of a typical honeybee. The queen lays eggs, which will be taken care of by the
worker bees (hive bees), and the eggs are hatched within 3 days, followed by the larval stage
which lasts for 6 days, and the pupal stage which lasts for 7-14 days. The bees then enter the
adult stage [9] (Assumption 1, 2).
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Symbol Description

t Time from start of model
nH Number of hive bees
nE Number of eggs
nB Number of larva and pupa
nF Number of foragers
R Mass of available resources
c Rate of resource collection
θ Rate of resource consumption
k Rate of forager death
r Rate of transition to foraging
l Maximum egg laying rate
ϕ Maximum eclosion rate

L(t) Egg laid per day
E(t) Daily eclosion number
F (t) Net forager transition rate

Table 3.1: Variables Used in BCPM

After the bees fully mature, they become worker bees, responsible for nursing tasks in
the hives [9]. However, they can transition into foragers, focusing on resource collection and
pollination. The reverse transition can also occur when there is more need for nursing than
foraging [10].

Factors such as resource availability and beehive population can alter the development cycle,
as shown in Figure 3.1.

Figure 3.1: Graphical Representation of a Typical Honeybee Lifecycle

3.3 Mathematical Modeling of Population
We model the population trend by first considering the change in the population of each

stage. Assuming that all eggs are hatched after 3 days they are laid (Assumption 1), we can
derive:

dnE

d t
= L(t)− L(t− 3)
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The laying rate per day L(t) has a positive correlation to the number of available resources,
but the effect reaches a maximum when the laying rate reaches a maximum for the queen.
Similarly, the laying rate also positively correlates to the number of hive bees in the colony, but
the effect reaches a maximum when there are excess workers. Therefore, we can construct the
following equation:

L(t) = l · Rt

Rt + ε
· nHt

nHt + w

where w and ε are arbitrary parameters that control the dependency of egg laying on the
number of resources and the number of hive bees, respectively.

We then consider the rate of change of population in the larval and the pupal stages. The rate
is equivalent to the hatching rate deducted by the eclosion rate, as presented in Figure 3.1. We
estimate that the time taken between hatching and eclosion is 16 days (Assumption 2), which
means that eclosion happens on the 19th day after an egg is laid. Thus, the following equation
can be constructed:

dnB

d t
= L(t− 3)− L(t− 19)

where L(t− 19) is derived from L((t− 3)− 16).

Next, we try to model the rate of change of hive bees. The increase in the number of hive
bees each day is equivalent to the eclosion rate from newly grown pupa subtracted by the net
forager transition rate. The eclosion rate is dependent on the quantity of essential resources and
the number of workers that take care of them during larval and pupal stages. We define the
hive-bee population rate and eclosion rate as follows:

dnH

d t
= E(t)− FR(t)

E(t) =
Rt

Rt + α
· L(t− 19) · nFt + nHt

nFt + nHt + β

where the remaining population of L(t− 19) are assumed to be dead. α and β are arbitrary
parameters that determine the relevance of the factors of resources and population, respectively,
on broods’ survival.

The net forager transition rate is the rate of transition to foragers subtracted by the rate of
inhibition, as shown in Figure 3.1. We represent this relationship in the following equation:

FR(t) = nHt ·
(
rmin + r

(
γ

γ +Rt

)
− σ

(
nFt

nFt + nHt

))
where γ and σ are arbitrary parameters that control the sensitivity of our model towards

resources and forager-hive bees ratio, respectively. rmin is the rate of forager recruitment when
there are maximum resources but no foragers yet. This can be concluded when Rt → ∞ and
nFt = 0:
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FR(t) = nHt · (rmin + r(0)− σ(0)) = nHt · rmin

The rate of increase in the population of foragers is modelled as the net forager transition
rate deducted by the death rate, which is shown as follows:

dnF

d t
=

{
nHt · FR(t)− krkmaxksnFt if Rt−1 +∆Rt ≥ 0

nHt · FR(t)− 1
2
nFt otherwise

where kr is a random real number between [0.75, 1.25].

The first condition is satisfied when there are still resources to meet the basic survival of
foragers, so there is a natural death rate of krkmaxks. kr simulates the random factors the foragers
may encounter which affect their lifespan, fluctuating the daily death rate by ±25%. kskmax

is the seasonality factor, which determines the death rate based on typical patterns observed
throughout the year, and is further explained in Section 3.3.

When no resource is available, we set the forager death rate to 0.5 to simulate an exponential
decline in population.

Lastly, we establish an equation to describe the change in resources over time. The resource
is collected by foragers but consumed by larvae, pupa, hive bees, and foragers. Therefore:

dR

d t
= crcmaxcsnFt − θBnBt − θHnHt − θFnFt

where cr is a random real number between [0.75, 1.25].

Similar to the seasonality factor for death rate, cscmax is the rate of resource collection
subject to seasonal change. cr is used to simulate the fluctuating resource collection by ±25%
due to unseen random factors, which is further described in Section 3.3.

3.4 Parameter Determination
We set the maximum laying rate of the queen l = 2000, in accordance with real-world

observations and research [11]. According to Harbo [12], a brood typically requires 163 mg of
resources to develop into an adult, which is equivalent to 10.2 mg per day over 16 days; an adult
bee requires 6.7 mg resources per day. Thus, we take θB = 0.0102 and θF = θH = 0.0067.

We set rmin = 0.25 and σ = 0.75 to assume that hive bees will only transform into foragers
4 days after their eclosion, and set r = 0.25 to double forager recruitment when there is a
shortage of resources, which is consistent with Khoury et al.’s suggestions [13].

We also set w = 5000 to represent the effect that half of the eggs fail to hatch when only
5000 hive bees take care of them. Then, we set α = γ = ε = 1000 to show the decreased
effect when total resources stored exceeds 1 kg, as Rt

Rt+α
> 1

2
, Rt

Rt+ε
> 1

2
, and γ

γ+Rt
< 1

2
when

Rt > 1000.

According to Russell et al. [14], the death rate k of foragers and the resource collection
rate c is normalised to give maximum values kmax = 0.102, cmax = 0.099 and rates ks, cs per
month, as shown in Table 3.2.
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Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ks 0.29 0.29 0.54 0.79 0.68 0.57 0.78 1.00 0.83 0.67 0.29 0.29
cs 0.03 0.03 0.48 0.93 0.97 1.00 0.60 0.19 0.32 0.45 0.25 0.10

Table 3.2: Table of ks and cs values

Lastly, we conducted several tests using initial values introduced in Section 3.4 on our model
to determine a reasonable β value. According to the results shown in Table 3.3 and Figure 3.2,
since a typical honeybee hive contains between 20,000 and 80,000 honeybees, we observe that
β = 40000 fits our need for this model.

β Value Maximum nHt (t > 1000) Minimum nHt (t > 1000)

20000 93635 38473
30000 82591 32149
40000 69531 25930
50000 54743 19674
60000 1 0

Table 3.3: Table of BCPM Results for Various β Values over 10 Years

0 500 1000 1500 2000 2500 3000 3500
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0
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n H
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=20000
=30000
=40000
=50000
=60000

Figure 3.2: BCPM Results for Various β Values Plotted over 10 Years

3.5 Typical Model Results
We define several initial values that represent a typical start-up phase of a honeybee colony.

Initial eggs, larva and pupa number nE0 = nB0 = 0 since the colony has not yet created any
brood. Initial hive bee number nH0 = 16000 and initial forager number nF0 = 8000, which
add up to give a population slightly over the minimum of 20,000 and in an approximate ratio of
2 : 1. Initial resource store R0 = 5000 to imitate the situation of basic storage at start-up.

We also set the starting as the 90th day of the year (in spring), when there are enough
resources to support the colony’s survival and growth, and this is the typical period when
broods start to form and develop [15]. The model is evaluated for 10 years (0 ≤ t ≤ 3650) to
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give the results in Table 3.4 and Figure 3.3. All maximum, minimum and average values are
calculated when t > 1000.

Name Symbol Maximum Minimum Average

Total (adult) population n 100862 35676 64877
Hive bee count nHt 69459 25277 45313
Forager count nFt 31737 10247 19622

Egg count nEt 1780 1190 1544
Larva and pupa count nBt 9468 6392 8234

Table 3.4: Table of Typical BCPM Results
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Figure 3.3: Typical BCPM Results

We observe a cyclical fluctuation in population and resource growth that occurs every year,
which is reasonable due to the periodic seasonal death rate kmaxks and resource collection rate
cmaxcs.

3.6 Sensitivity Analysis
3.6.1 Sensitivity Analysis on Aribitary Parameters

Firstly, we change the arbitrary parameters rmin, r, σ, α, γ and ε (the sensitivity analysis for
β has been conducted in Section 3.3) by ±10% to test the consistency of the repeating pattern
shown by our model. The results are shown in Figure 3.4 and 3.5.

We observe a generally consistent trend in all tests, so we consider our choices of parameters
to be reasonable and stable overall.
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Figure 3.4: Sensitivity Analysis on Arbitrary Parameters
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Figure 3.5: (cont.) Sensitivity Analysis on Arbitrary Parameters

3.6.2 Sensitivity Analysis on Initial Values

In order to identify the factors that have the most significant effect on the honeybee colony
population, we conduct multiple simulations using our model while tweaking the initial values.
The results are shown in Table 3.5.

We notice that the initial resource stored R0 and initial hive bee population nH0 significantly
affect the population compared to other factors: the honeybee population shrinks and eventually
collapses when the values of these two factors decrease. Thus, we perform another sensitivity
analysis based on both factors changing simultaneously, where 0 ≤ R0 ≤ 10000 and 0 ≤
nH0 ≤ 32000 for 2002 = 40000 possible combinations for the two factors. We eliminated the
effect of random terms kr and cr to reach a smoother graph in Figure 3.6.

We observe an unusual pattern– the honeybee population either maintains a relatively stable
average number of around 60000 or the colony collapses completely. Therefore, we now
construct an extra model which determines whether a colony collapses.
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Variable n

R0 max. min. mean

10000 68565 25398 45507
5000 68799 25889 45466
2500 68808 25953 45233
1250 68949 24928 45166

0 — — [272 d]

nH0 max. min. mean

32000 69052 25621 45392
16000 68607 25147 45188
8000 68411 26394 45379
4000 68285 23064 43080

0 — — [117 d]

nF0 max. min. mean

16000 69594 26296 46030
8000 68529 26143 45534
4000 69080 25662 45224

Variable n

nF0 max. min. mean

(4000) 69080 25662 45224
2000 68690 26500 45603

0 68629 26101 45265

nE0 max. min. mean

32000 69179 25525 45425
16000 69385 26039 45528
8000 68482 25951 45372
4000 70005 26233 45690

0 68494 25369 44968

nB0 max. min. mean

32000 69529 25961 45344
16000 68579 26525 45705
8000 68764 26486 45558
4000 68838 25863 45257

0 68698 25544 45243

∗"—" denotes a collapsed colony; number in square brakets is the time the colony survived.

Table 3.5: Table of BCPM Results under Different Initial Values

Figure 3.6: Sensitivity Analysis on nH0 and R0

3.7 Simplified Colony Collapse Disorder Model (SCCDM)
We first set colonies with an average population below the threshold of n = 30000 to

collapse; otherwise, the average population is set to 60000. Dimension reduction is also
performed to fit the relationship into a planar equation. The process is shown in Figure 3.7.

We now trace the edge shown in Figure 3.7 (right) by selecting the minimum red nH0 value
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Figure 3.7: Thresholding and Dimension Reduction on Figure 3.6

for each R0. We can then fit the following equation to the curve using non-linear least squares:

R0 = ae−bnH0 + c

where a, b and c are constants to be determined. The results are plotted in Figure 3.8.

5000 10000 15000 20000 25000 30000
nH0

2000

4000

6000

8000

10000

R 0

Traced Edge
Fitted Curve

Figure 3.8: Fitted Function for SCCDM

Therefore, the evaluated constants, together with the rearranged fitted equation, state that a
honeybee colony will only thrive when

R0 − a exp(−bnH0) > c

where a = 2.86660147× 104, b = 5.3785166× 10−4 and c = 9.224787× 102.

3.8 Conclusion
We have established a Honeybee Colony Population Model (BCPM) with a group of equa-

tions, as described in Section 3.2, to simulate the change in the honeybee population over time.
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The typical results described in Table 3.4 and Figure 3.3 show a pattern of annual periodic
change, which is reasonable due to the presence of seasonality factors ks and cs.

We have performed sensitivity analysis on all of our arbitrary parameters to reach a conclu-
sion that our model is relatively stable and is hence reliable. We repeated the analysis for all
initial values and found that the initial hive bee number nH0 and initial resource store R0 are
factors that are most significant in affecting the honeybee colony’s population.

Lastly, we reached the conclusion that a colony either collapses or maintains a relatively
constant average population at around 60000. The determining equation for colony survival
is R0 − a exp(−bnH0) > c when a = 2.86660147 × 104, b = 5.3785166 × 10−4 and c =
9.224787× 102.

4 Hive Deployment Model (HDM)
4.1 Variables

The table of variables used in this model is shown in Table 4.1.

Symbol Description

H set of all hive locations
k0 Number of flowers per acre
k Number of unpollinated flowers
nFt nFt from Model 1
cs cs from Model 1
v Maximum daily forager flower visits

mxy Simulated node for 1 acre
g Number of foragers per group
p Visits per forager per area
H Number of hives deployed
ζ Sum of minimum distances to nearest hive
f Number of movement between nodes per day
d Number of forager groups
a Tiredness index
ω Daily sum of costs taken by a group
s Distance attenuation
pr Pollinations per group per area
r Random negative effect
t0 Starting day of pollination
ts Starting date of pollination in year
∆t Duration of pollination
q Population increment factor when H > 20

Table 4.1: Variables Used in HDM
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4.2 Model Establishment
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Figure 4.1: Initial Constrcution of Graph

We first attempt to establish the model through
a simulation approach. Firstly, we model the 20-
acre farmland into 20 nodes on an undirected,
weighted graph, as shown in Figure 4.1. The num-
ber marked on each node is the remaining flow-
ers waiting to be pollinated, and the number on
each edge marks the cost. We denote the bottom-
leftmost node as m00, and the upper-rightmost
node as m34.

The model is evaluated multiple times for hive
number H ≥ 1 until the number of hives can sat-
isfy the pollination requirements. For each choice
of H , we consider the "best" locations to place the
hives so that the sum of distances from each node
to their respective nearest hive ζ is minimal. This relationship is expressed as the following
equation:

ζ =
3∑

x=0

4∑
y=0

min{|x− xh|+ |y − yh| (xh, yh) ∈ H}

where H is the set of all hive locations. For 1 ≤ H ≤ 6, we calculate ζ for all possible(
20
1

)
+
(
20
2

)
+ · · ·+

(
20
6

)
= 60459 permutations to find out the best arrangement of the hives, as

shown in Figure 4.2, where all nodes are represented in the structure same as Figure 4.1, and a
blue circle indicates the presence of a hive. For 7 ≤ H ≤ 20, an extra hive is put in a random
location without a hive according to the arrangement of H − 1, since ζ reaches 20−H in this
range, and every extra hive only contributes a decrease of 1 in ζ due to the decrease in distance
of a current node from 1 to 0.
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ζ=16
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H=13
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ζ=5
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ζ=3
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ζ=0

H=2

ζ=30

H=3

ζ=24

Figure 4.2: Hive Arrangements for Various ζ Values

In order to reduce the time complexity of our model, we assume that p = 25 visits are made
to each node each time. We also group the foragers into groups of g = 200 in which group
members operate together. We find the total number of movements between nodes per day
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f = ⌊v/p⌋, where v is the maximum flower visits per forager per day. Therefore, for each day
t ∈ [t0, t0 +∆t] where t0 = 365× 3 + ts, we consider the followings for each hive at mxhyh :

1. d = ⌊nFt/g⌋ groups of foragers are formed and are all placed at mxhyh .

2. the number of flowers that require pollination increases by 1
50
(k0−k), assuming that over

80% of flowers will require pollination again in 90 days if all flowers are pollinated.

3. For each group of foragers, all costs (weights on edges) are reset to 1 and steps 3-5 are
repeated for fcs times. cs is the seasonality factor used in BCPM for simulating changing
resource collection rates and is therefore used to represent the change in pollination due
to seasonal changes such as temperature and weather.

4. The group pollinates pr = g · k
k0
· p · a · s · r flowers in current node, where

• k
k0

is the possibility that a randomly chosen flower is not pollinated. This factor
shows the effect that a honeybee is more likely to visit a pollinated flower if the
proportion of pollinated flowers is already large, decreasing successful pollination
rates.

• The tiredness index a = v
v+ω

is used to address the effect of falling pollination rate
due to working strain during a single day.

• The distance attenuation s = 1
1+s02

shows halved pollination rate when the foragers
are operating at neighbouring nodes from the hive, and gives an increasing effect as
the distance increases. Since bees have a preference to work within 300 feet from
their hive [16], we consider this factor as reasonable as neighbouring nodes are at
a distance of approximately 209 to 418 feet from the centre node (considering each
node is square farmlands; each farmland has side lengths of

√
43560 ft2 ≈ 209 ft).

• The random negative effect r is used to simulate random effects such as storms
and diseases in crops. We take this effect as an arbitrary random number where
r ∈ [0.75, 1].

5. Then, the group transfers to another neighbouring node, such that the cost to travel to the
node is minimum. If there are multiple nodes that satisfy this condition, then a random
node between them is chosen.

6. The cost of the path that the group has just passed increases by 1. This reduces the
likelihood of the group repeating the same paths in a short time.
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Figure 4.3: Graph Pattern after First
Movement

Figure 4.3 shows a typical pattern after simulating
steps 1-6 from the initial graph in Figure 4.1, without
any repetition involved. The blue circle indicates the
hive location, the blue lines indicate the path the group
has just passed, and the blue-in-orange circles indicate
the resulting location of the group.

Following this algorithm, the number of yet-to-be-
pollinated flowers on each node can be found for one
specific number of hives. We repeat this algorithm with
an increasing number of hives until we reach < 1% of
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total not pollinated crops in the 20-acre area, and < 5%
of not pollinated crops in each individual node. If these conditions are not satisfied even when
H = 20, we multiply the population in each hive by a factor q until the conditions are met,
where we would conclude that H = 20q hives are needed.

A pseudo code representation of this model is shown in Algorithm 1.

Algorithm 1 Simulation Process of HDM
G← weighted undirected graph in Figure 4.1
H, h← 1
while max k ≥ 0.05k0 or Σk ≥ 0.01× 20k0 do

if H > 20 then
h← 20
q ← H/20

end if
for all t ∈ [t0, t0 +∆t] do ▷ for each day

d← ⌊qnFt/g⌋
all k ← (k − k0)/50 ▷ add new flowers each day
for all (xh, yh) ∈ Hh do ▷ for each hive

for 1 . . . d do ▷ for each group
All weights on graph← 1
ω ← 0
x, y ← xh, yh
for 1 . . . ⌊fcst⌋ do ▷ for each visit

a← v
v+ω

s← 1
1+s02

k ← k − g · k
k0
· p · a · s·Random(0.75,1) ▷ pollination occurs

ω ← ω+ next node’s cost
Move to next node and cost + 1

end for
end for

end for
end for
H ← H + 1

end while

Figure 4.4: Typical Result of HDM

As an example, for arbitrary parameters H =
1, v = 600, ts = 90,∆t = 60 and k0 = 150000,
we obtain a reasonable distribution of remaining
not pollinated flowers, where the number increases
as the distance from hive (1, 2) increases. This
typical result is shown in Figure 4.4.

In this stage, the hive is not considered to sup-
port pollination of the farmland, since the max-
imum k at (3, 4) is 35093, which is a number
far larger than 150000 × 0.05 = 7500. More-
over, the total number of not pollinated flowers is
225482, and it is still far larger than the require-
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ment 150000× 20× 0.01 = 30000.

4.3 Evaluation and Results
We first set the maximum daily flower visits per forager v = 600, which is a crop species-

inspecific parameter and is held constant across different evaluations of our model. Since a bee
colony can pollinate 20 million flowers per day at maximum [17], we divide the number by the
typical daily maximum forager count nF max ≈ 30000 in Table 3.4. Thus, it gives individual
maximum flower visits v = 2× 107 ÷ 30000 = 600.

Then, we choose 9 widely seen bee-pollinated plant species to consider their respective s,
∆t and k0. The results are shown in Table 4.2.

Species k0 s [18] ∆t [18] Hives needed Hives / acre

Alfalfas 266667 165 40 11 0.55
Almonds 860000 30 45 21 1.05
Apples 14400 135 9 2 0.10

Avocados 32000 90 60 3 0.15
Blueberries 3333333 97 49 83 4.15

Lilies 180000 157 35 9 0.45
Onion 80000 120 30 5 0.25
Roses 150000 150 90 10 0.50

Sunflowers 25000 200 84 2 0.10

Table 4.2: HDM Results for Various Species

4.4 Sensitivity Analysis
Lastly, we perform sensitivity analysis to ensure the stability and reliability of our model’s

outcomes. We alter the arbitrary variables r and daily increase in not pollinated flowers by:

• Changing the lower bound for r by ±10%, so that r ∈ [0.75± 0.075, 1].

• Changing the factor of daily increase in not pollinated flowers by ±10%, so that the
increase becomes ( 1

50
± 1

500
)(k0 − k).
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Figure 4.5: Sensitivity Analysis of HDM

We randomly change the two variables in the
±10% range for 50 random combinations, then
test and compare the outcomes on lillies, whose
k0 = 180000, s = 157,∆t = 35 and require 10
hives according to previous results in Table 4.2.
The tested results are plotted as shown in Figure
4.5.

We notice that all tests evaluate an outcome of
H = 9. Therefore, we consider the results to be
stable and less prone to the arbitrary parameters
mentioned above.
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4.5 Conclusion
We have established a model that estimates the number of hives needed in the 20-acre

field for different plant species depending on flower density, pollination date, and pollination
duration. The model uses a simulation algorithm that takes each acre as a 1-acre node and
imitates the operation of groups of foragers.

We have given some results for 9 widely grown, bee-pollinated plant species. Among
these species, blueberries take a maximum of 83 hives (4.15 hives / acre), whereas apples and
sunflowers take a minimum of 2 hives (0.1 hive / acre).

Lastly, we conducted a sensitivity analysis on arbitrary parameters in our model. The
analysis reported a consistent result through±10% changes in those parameters. Therefore, we
consider our model to be stable.

5 Strengths and Weaknesses
5.1 Strengths

• Honeybee Colony Population Model (BCPM) estimates the population of a typical colony,
including hive bees, foragers, eggs, larvae, and pupae. This model not only estimates the
overall population over time, but also gives insight into other aspects, such as the adult
proportion in the colony or egg laying rate of the queen.

• We proposed a simplified equation in Simplified Colony Collapse Disorder Model (SC-
CDM) to predict whether or not a colony will collapse, depending on its initial hive bee
number and resource store. Therefore, the model is relatively easy to implement and run
with faster evaluation.

• The time complexity of the Hive Deployment Model (HDM) has been optimized, which
is around 5000 times faster with the optimization. The typical time of evaluation used
for each species is around 15 seconds, which is considered acceptable as this model is
typically run for only one species at a time.

• HDM also suggests the best locations to place hives which maximizes the pollinated
flowers with minimal hive numbers. Minimizing the number of hives used reduces the
cost and effort required when deploying these hives in real-life scenarios.

5.2 Weaknesses
• We did not consider the effect of unexpected events such as diseases and natural disasters

in BCPM. Since these events heavily depend on locations and background, this effect
is hardly predictable with the given information. However, since the occurrence of
these events is extremely rare, their influence on the overall results in our model is not
significant.

• Considering the complexity of HDM, we did not evaluate the negative impacts over time
in detail, instead, we used a random negative effect coefficient r to demonstrate the overall
effect, whose effect may be less reliable but has the advantage of reducing the complexity
of our model.
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A Appendix
A.1 BCPM Implementation in Python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

c_max = 0.099
c_season = np.array([0.03] * 31 + [0.03] * 28 + [0.48] * 31 +

[0.93] * 30 + [0.97] * 31 + [1.00] * 30 +
[0.60] * 31 + [0.19] * 31 + [0.32] * 30 +
[0.45] * 31 + [0.25] * 30 + [0.10] * 31)

k_max = 0.102
k_season = np.array([0.29] * 31 + [0.29] * 28 + [0.54] * 31 +

[0.79] * 30 + [0.68] * 31 + [0.57] * 30 +
[0.78] * 31 + [1.00] * 31 + [0.83] * 30 +
[0.57] * 31 + [0.29] * 30 + [0.29] * 31)

l = 2000
sigma = 0.75
r_min = 0.25
r = 0.25
alpha = gamma = epsilon = 1000
beta = 40000
w = 5000
theta_b = 0.0102
theta_f = theta_h = 0.0067

n_hive_0 = 16000
n_forager_0 = 8000
resources_0 = 5000
n_eggs_0 = 0
n_larva_0 = 0
n_hive = np.array([n_hive_0] * 19, dtype=float)
n_forager = np.array([n_forager_0] * 19, dtype=float)
resources = np.array([resources_0] * 19, dtype=float)
n_eggs = np.array([n_eggs_0] * 19, dtype=float)
n_larva = np.array([n_larva_0] * 19, dtype=float)

# day 0
n_hive = np.append(n_hive, n_hive_0)
n_forager = np.append(n_forager, n_forager_0)
resources = np.append(resources, resources_0)
n_eggs = np.append(n_eggs, 0)
n_larva = np.append(n_larva, 0)

def L(t):
return l * resources[t] / (resources[t] +
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epsilon) * n_hive[t] / (n_hive[t] + w)

def E(t):
return resources[t] / (resources[t] + alpha) * L(t - 19) * (

n_forager[t] + n_hive[t]) / (n_forager[t] + n_hive[t] + beta)

def F(t):
return r_min + r * (gamma / (gamma + resources[t])) - sigma * (

n_forager[t] / (n_forager[t] + n_hive[t]))

t_offset = 90
RANDOM = True
for t in range(19, 19 + 365 * 10):

if RANDOM:
diff_resources = (

c_max * c_season[(t + t_offset) % 365] *
(0.75 + np.random.random(1) / 2) *
n_forager[t]) - theta_b * n_larva[t] - theta_h * n_hive[

t] - theta_f * n_forager[t]
else:

diff_resources = (c_max * c_season[
(t + t_offset) % 365] * n_forager[t]) - theta_b * n_larva[

t] - theta_h * n_hive[t] - theta_f * n_forager[t]
resources = np.append(

resources, np.maximum(resources[t] + diff_resources, 0))
diff_egg = L(t) - L(t - 3)
n_eggs = np.append(n_eggs, np.maximum(n_eggs[t] + diff_egg, 0))
diff_larva = L(t - 3) - L(t - 19)
n_larva = np.append(n_larva, np.maximum(n_larva[t] + diff_larva,

0))
diff_hive = E(t) - n_hive[t] * F(t)
n_hive = np.append(n_hive, np.maximum(n_hive[t] + diff_hive, 0))
if (resources[t] + diff_resources) < 0:

k = 0.5
else:

k = k_max * k_season[(t + t_offset) % 365]
if RANDOM:

diff_forager = n_hive[t] * F(t) - k * n_forager[t] * (
0.75 + np.random.random(1) / 2)

else:
diff_forager = n_hive[t] * F(t) - k * n_forager[t]

n_forager = np.append(n_forager,
np.maximum(n_forager[t] + diff_forager, 0))
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A.2 HDM Implementation in Python
import numpy as np
import networkx as nx
import pandas as pd

# hive loc is hidden due to length constraints.
c_season = np.array([0.03] * 31 + [0.03] * 28 + [0.48] * 31 +

[0.93] * 30 + [0.97] * 31 + [1.00] * 30 +
[0.60] * 31 + [0.19] * 31 + [0.32] * 30 +
[0.45] * 31 + [0.25] * 30 + [0.10] * 31,
dtype=np.float32)

paths = dict(nx.all_pairs_dijkstra(G))
n_forager = np.array(pd.read_csv(’n_forager.csv’)[’0’])
def model2(t_start=90,

t_delta=60,
k_flower=200000,
hive_count=1,
r_lower=0.75,
inc=1 / 50):

print("AIM", 0.01 * k_flower * 20, 0.05 * k_flower)
group_size = 200
p_pol = 25
v_visit = 600
q_multiply = 1
G = nx.Graph()
for x in range(4):

for y in range(5):
G.add_node((x, y))

for x in range(4):
for y in range(5):

if x < 3:
G.add_edge((x, y), (x + 1, y), weight=1)

if y < 4:
G.add_edge((x, y), (x, y + 1), weight=1)

nx.set_node_attributes(G, k_flower, ’flower’)
while True:

if hive_count > 20:
hives = hive_loc[20]
q_multiply = hive_count / 20

else:
hives = hive_loc[hive_count]
q_multiply = 1

for t in range(t_start, t_start + t_delta + 1):
f_reps = v_visit // p_pol
d_num = q_multiply * n_forager[t] // group_size
for (newx, newy) in G.nodes():

G.nodes[(newx,



Team # 12600 Page 23 of 25

newy)][’flower’] += (k_flower - G.nodes[
(newx, newy)][’flower’]) * inc

for h in hives:
for _ in range(np.int32(d_num)):

nx.set_edge_attributes(G, 1, ’weight’)
curx, cury = h
omega = 0
for _ in range(

np.int32(c_season[t % 365] * f_reps)):
# for i in range(1):
a_tired = v_visit / (v_visit + omega)
s_deduct = 1 / (1 +

paths[(curx, cury)][0][h]**2)
G.nodes[(curx, cury)][’flower’] -= (

1 - np.random.random() * (1 - r_lower)
) * group_size * p_pol * a_tired * s_deduct * G.nodes[

(curx, cury)][’flower’] / k_flower

# find next node
adj_loc = [

n for n in G.neighbors((curx, cury))
]
min_weight = np.inf
for next_x, next_y in adj_loc:

min_weight = min(
min_weight,
G.edges[(curx, cury),

(next_x, next_y)][’weight’])
next_loc = [

n for n in adj_loc
if G.edges[(curx, cury),

n][’weight’] == min_weight
]
next_x, next_y = next_loc[np.random.randint(

len(next_loc))]
omega += G.edges[(curx, cury),

(next_x, next_y)][’weight’]
G.edges[(curx, cury),

(next_x, next_y)][’weight’] += 1
curx, cury = next_x, next_y

res = nx.get_node_attributes(G, ’flower’).values()
if (sum(res) < 0.01 * k_flower * 20 and

max(res) < 0.05 * k_flower):
print(hive_count, sum(res), max(res))
return hive_count

else:
print(hive_count, sum(res), max(res))
hive_count += 1
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